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GPU Architecture & Best Practices 
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WHAT IS HETEROGENEOUS COMPUTING? 
Application Execution 

+ 

GPU CPU 

High Data Parallelism 
High Serial 

Performance 
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GPU ARCHITECTURE 

GPU L2 

GPU DRAM 

SM-0 SM-1 SM-N 

SYSTEM 
MEMORY 
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SM 
SM 

SM 

GPU SM ARCHITECTURE 

Functional Units = CUDA cores 

192 SP FP operations/clock 

64 DP FP operations/clock 

Register file (256KB) 

Shared memory (16-48KB) 

L1 cache (16-48KB) 

Read-only cache (48KB) 

Constant cache (8KB) 

 

Kepler SM 

SM 

Register 
File 

L1 Cache 

Shared  
Memory 

Read-only 
Cache 

Constant 
Cache 

Functional  
Units 

Shared  
Memory 
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SIMT EXECUTION MODEL 

Thread: sequential execution unit 

All threads execute same sequential program 

Threads execute in parallel 

Thread Block: a group of threads 

Threads within a block can cooperate 

Light-weight synchronization 

Data exchange 

Grid: a collection of thread blocks 

Thread blocks do not synchronize with each other 

Communication between blocks is expensive 

 

Thread 

Thread Block 

Grid 
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SIMT EXECUTION MODEL 
Software Hardware 

Threads are executed by CUDA Cores 

Thread 

CUDA 
Core 

Thread Block Multiprocessor 

Thread blocks are executed on multiprocessors 
 
Thread blocks do not migrate 
 
Several concurrent thread blocks can reside on one 
multiprocessor - limited by multiprocessor 
resources (shared memory and register file) 

Grid 

A kernel is launched as a grid of thread blocks 

Device 
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SIMT EXECUTION MODEL 

Threads are organized into groups of 32 threads called “warps” 

All threads within a warp execute the same instruction simultaneously 
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LOW LATENCY OR HIGH THROUGHPUT? 

CPU architecture must minimize latency within each thread 

GPU architecture hides latency with computation from other threads 

GPU Stream Multiprocessor – High Throughput Processor 

CPU core – Low Latency Processor Computation Thread/Warp 

Tn 

 
Processing 

Waiting for data 

Ready to be processed 

Context switch W1 

 

W2 

 

W3 

 

W4 

 

T1 

 

T2 

 

T3 

 

T4 
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ACCELERATOR FUNDAMENTALS 

We must expose enough parallelism to saturate the device 

Accelerator threads are slower than CPU threads 

Accelerators have orders of magnitude more threads 

 

 

 

t0 t1 t2 t3 

t4 t5 t6 t7 

t8 t9 t10 t11 

t12 t13 t14 t15 

t0 t0 t0 t0 

t1 t1 t1 t1 

t2 t2 t2 t2 

t3 t3 t3 t3 

Fine-grained parallelism is good Coarse-grained parallelism is bad 
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BEST PRACTICES 

Minimize data transfers between CPU and GPU  

Optimize Data Locality: GPU 

System 

Memory 
GPU Memory 
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BEST PRACTICES 

Minimize redundant accesses to L2 and DRAM 

Store intermediate results in registers instead of global memory 

Use shared memory for data frequently used within a thread block 

Use const __restrict__ to take advantage of read-only cache 

 

Optimize Data Locality: SM 

SM 

L2 
Cache 

GPU 
DRAM 
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BEST PRACTICES 

If multiple addresses from a warp lie within the same cache line, 
that line is moved only once 

Best case: all addresses lie in a single L1 cache line (128B) 

 

 

Worst case: 32 separate L1 transactions (31 replays) 

 

 

Coalesce Memory Requests 

0 1 31 

0 1 31 more memory traffic 
more issued instructions 
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BEST PRACTICES 
Avoid Warp Divergence 

if( threadIdx.x < 12 ) { 
 
 
} 
else { 
 
 
} 

Instructions are issued per warp 
 
Different execution paths within a warp 
are serialized 
 
Different warps can execute different 
code with no impact on performance 
 
Avoid branching on thread index 
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BEST PRACTICES 

Expose enough parallelism 

Optimize data locality 

Minimize transfers between CPU and GPU 

Minimize redundant accesses to GPU DRAM 

Avoid memory divergence 

Ensure global accesses are coalesced 

Avoid warp divergence 

Ensure threads in a warp execute the same path 

 

Quick Summary 
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Programming GPUs 
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3 WAYS TO ACCELERATE APPLICATIONS 

Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 
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SIMPLICITY & PERFORMANCE 

Accelerated Libraries 

Little or no code change for standard libraries, high performance 

Limited by what libraries are available 

Compiler Directives 

Based on existing programming languages, so they are simple and familiar 

Performance may not be optimal, directives often do not expose low level architectural details 

Parallel Programming languages 

Expose low-level details for maximum performance 

Often more difficult to learn and more time consuming to implement 
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3 WAYS TO ACCELERATE APPLICATIONS 

Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 
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NVIDIA DEVELOPER LIBRARIES 

cuBLAS 
cuBLAS-XT 

NVBLAS 
cuFFT 

cuFFT-XT 

cuSPARSE 
cuSOLVER 

AMGX 

https://developer.nvidia.com/gpu-accelerated-libraries 

cuDNN 

cuRAND NPP THRUST NVENC NVBIO 

https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
https://developer.nvidia.com/gpu-accelerated-libraries
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BLAS LIBRARIES 

Step 1: Substitute library calls with equivalent CUDA library calls 

  saxpy (  …  )                        cublasSaxpy (  …  ) 

Step 2*: Manage data locality if necessary 

  - with CUDA:  cudaMalloc(), cudaMemcpy(), etc. 
         - with CUBLAS:  cublasAlloc(), cublasSetVector(), etc. 

Step 3: Rebuild and link the CUDA-accelerated library 

 nvcc myobj.o –l cublas  

CUBLAS 

https://developer.nvidia.com/cuBLAS 

https://developer.nvidia.com/cuBLAS
https://developer.nvidia.com/cuBLAS
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BLAS LIBRARIES 

Drop-in replacement for level 3 BLAS routines (i.e. GEMM) 

Automatically uses all available GPUs in the system 

No need to modify or even recompile your application 

LD_PRELOAD=<path to libnvblas.so> <application> 

 

 

 

 

NVBLAS 

http://docs.nvidia.com/cuda/nvblas 

http://docs.nvidia.com/cuda/nvblas
http://docs.nvidia.com/cuda/nvblas


23  

SPARSE MATRIX LIBRARIES 

CUSPARSE 

Collection of sparse matrix building blocks 

Supports multiple matrix formats 

https://developer.nvidia.com/cuSPARSE 

 

CUSOLVER 

Collection of sparse and dense solvers 

Similar to LAPACK 

https://developer.nvidia.com/cusolver 

 

 

AmgX 

Algebraic Multi-Grid Solver 

Flexible configuration 

Krylov methods 

Parallel smoothers 

MPI support 

https://developer.nvidia.com/amgx 

 

 

https://developer.nvidia.com/cuSPARSE
https://developer.nvidia.com/cuSPARSE
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/cusolver
https://developer.nvidia.com/amgx
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THRUST 

C++ template library for CUDA 

Mimics Standard Template Library (STL)  

 

https://developer.nvidia.com/thrust 

https://developer.nvidia.com/thrust
https://developer.nvidia.com/thrust
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THRUST EXAMPLE: SAXPY  

int N = 1<<20; 

std::vector<float> x(N), y(N); 

 

... 

 

 

 

 

 

// Perform SAXPY on 1M elements 

std::transform(x.begin(), x.end(), 

               y.begin(), y.end(), 

       2.0f * _1 + _2); 

 

int N = 1<<20; 

thrust::host_vector<float> x(N), y(N); 

 

... 

 

thrust::device_vector<float> d_x = x; 

thrust::device_vector<float> d_y = y; 

 

 

// Perform SAXPY on 1M elements 

thrust::transform(d_x.begin(), d_x.end(),  

                  d_y.begin(), d_y.begin(),  

                  2.0f * _1 + _2); 

 

STL C++ Code Parallel C++ Code 
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CUB 

Library of SIMT collective primitives for block-wide and warp-wide 
kernel programming 

Cooperative sort, prefix sum, reduction, histogram, etc. 

http://nvlabs.github.io/cub 

http://nvlabs.github.io/cub
http://nvlabs.github.io/cub
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3 WAYS TO ACCELERATE APPLICATIONS 

Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 
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OPENACC DIRECTIVES SYNTAX 

C/C++ 
 #pragma acc directive  [clause  [,]  clause]  …] 
 ...structured code block 

Fortran 
 !$acc directive  [clause  [,]  clause]  …] 
 ...structured code block 
 !$acc end directive 
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OPENACC EXAMPLE: SAXPY 

subroutine saxpy(n, a, x, y)  
  real :: x(n), y(n), a 
  integer :: n, i 
 
  !$acc parallel loop 
  do i=1,n 
    y(i) = a*x(i)+y(i) 
  enddo 
  !$acc end parallel loop 
end subroutine saxpy 
  
... 
! Perform SAXPY on 1M elements 
call saxpy(2**20, 2.0, x, y) 
... 

void saxpy(int n,  
           float a,  
           float *x,  
           float *restrict y) 
{ 
#pragma acc parallel loop 
  for (int i = 0; i < n; ++i) 
    y[i] = a*x[i] + y[i]; 
} 
 
... 
// Perform SAXPY on 1M elements 
saxpy(1<<20, 2.0, x, y); 
... 
 
 

SAXPY in C SAXPY in Fortran 



30  

3 WAYS TO ACCELERATE APPLICATIONS 

Applications 

Libraries 

Easy to use 
Most Performance 

Programming 
Languages 

Most Performance 
Most Flexibility 

Easy to use 
Portable code 

Compiler 
Directives 
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GPU PROGRAMMING LANGUAGES 

CUDA Fortran Fortran 

CUDA C C 

CUDA C++ C++ 

PyCUDA, Copperhead Python 

Alea.cuBase F# 

MATLAB, Mathematica, LabVIEW Numerical analytics 
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CUDA EXAMPLE: SAXPY 

 

void saxpy_serial(int n,  

                  float a,  

                  float *x,  

                  float *y) 

{ 

   

  for (int i = 0; i < n; ++i) 

    y[i] = a*x[i] + y[i]; 

} 

 

// Perform SAXPY on 1M elements 

saxpy_serial(4096*256, 2.0, x, y); 

Serial C Code 

__global__  

void saxpy_parallel(int n,  

                    float a,  

                    float *x,  

                    float *y) 

{ 

  int i = blockIdx.x*blockDim.x +  

          threadIdx.x; 

  if (i < n) y[i] = a*x[i] + y[i]; 

} 

 

// Perform SAXPY on 1M elements 

saxpy_parallel<<<4096,256>>>(n,2.0,x,y); 

Parallel CUDA Code 
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CUDA MEMORY MANAGEMENT 

Unified Memory 

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/ 

void sortfile(FILE *fp, int N) { 
  char *data, *d_data; 
  data = (char*) malloc(N); 
  cudaMalloc (&d_data, N); 
 
  fread(data, 1, N, fp); 
 
  cudaMemcpy(d_data,data,N,H2D); 
  qsort<<<...>>>(d_data,N,1,compare); 
  cudaMemcpy(data,d_data,N,D2H); 
 
  use_data(data); 
 
  cudaFree(d_data); 
  free(data); 
} 

Without Unified Memory 

void sortfile(FILE *fp, int N) { 
  char *data; 
  cudaMallocManaged(&data, N); 
 
 
  fread(data, 1, N, fp); 
 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  cudaFree(data); 
 
} 

http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
http://devblogs.nvidia.com/parallelforall/unified-memory-in-cuda-6/
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CUDA MEMORY MANAGEMENT 

cudaMalloc & cudaMemcpy 

Explicitly track host and device 
memory 

Explicitly relocate data (sync or 
async) 

Expresses data locality (most 
performance) 

 

cudaMallocManaged 

Single pointer for host & device 
memory 

Automatic relocation at launch 
and sync 

Easier porting of application 
(simplicity) 

 

 ADVICE: develop with cudaMallocManaged, optimize with cudaMalloc if necessary 
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The Future of GPUs 
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NEW TECHNOLOGIES 

NVLINK 

GPU high speed interconnect 

5x-12x PCI-E Gen3 bandwidth 

Planned support for POWER® CPUs 

HBM (Stacked Memory) 

4x higher bandwidth (~1 TB/s) 

3x larger capacity 

4x more energy efficient per bit  
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IMPROVING UNIFIED MEMORY 

void sortfile(FILE *fp, int N) { 
  char *data, *d_data; 
  cudaMallocManaged(&data, N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(d_data,N,1,compare); 
  cudaDeviceSynchronize(); 
  
  use_data(data); 
 
  cudaFree(data); 
} 

void sortfile(FILE *fp, int N) { 
  char *data; 
  data = (char*) malloc(N); 
 
  fread(data, 1, N, fp); 
 
  qsort<<<...>>>(data,N,1,compare); 
  cudaDeviceSynchronize(); 
 
  use_data(data); 
 
  free(data); 
} 
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SUMMIT 

Vendor: IBM (Prime) / NVIDIA™ / Mellanox Technologies® 

At least 5X Titan’s Application Performance  

Approximately 3400 nodes, each with: 

IBM POWER9 CPUs + NVIDIA Volta GPUs 

CPUs and GPUs connected with high speed NVLink  

Large coherent memory: over 512 GB (HBM + DDR4) 

Over 40 TF peak performance  

Dual-rail Mellanox® EDR-IB full, non-blocking fat-tree interconnect  

 

 

2017 OLCF Leadership System 
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SUMMIT 
How does Summit compare to Titan 



40  

SUMMIT 

Fewer but much more powerful nodes 

1/6th the number of nodes, but ~25x more powerful 

Must exploit more node-level parallelism 

Multiple CPUs and GPU to keep busy 

Likely requires OpenMP or OpenACC programming model 

Very large memory 

Summit has ~15x more memory per node than Titan 

Interconnect is only ~3x the bandwidth of Titan 

Need to exploit data locality within nodes to minimize message passing traffic 

 

Titan & Summit Application Differences 
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RESOURCES 

CUDA resource center:  

http://docs.nvidia.com/cuda 

GTC on-demand and webinars:  

http://on-demand-gtc.gputechconf.com 

http://www.gputechconf.com/gtc-webinars 

Parallel Forall Blog: 

http://devblogs.nvidia.com/parallelforall 

Self-paced labs: 

http://nvlabs.qwiklab.com 

 

 

 

 

Learn more about GPUs 
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